Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

General Description

The MAX9583/MAX9584/MAX9585 are small, low-power, multichannel video amplifiers with integrated reconstruction filters. Specially suited for standard-definition video signals, these devices are ideal for a wide range of television, set-top box, and portable applications.

The MAX9583/MAX9584/MAX9585 inputs can be directly connected to the outputs of a video digital-toanalog converter (DAC). The reconstruction filter typically has $\pm 1 \mathrm{~dB}$ passband flatness at 8.5 MHz and 55 dB attenuation at 27 MHz . The amplifiers have a $2 \mathrm{~V} / \mathrm{V}$ gain and the outputs can be DC-coupled to a 75Ω load which is the equivalent of two video loads, or AC-coupled to a 150Ω load

The MAX9583/MAX9584/MAX9585 operate from a 2.7 V to 3.6 V single supply and are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range. The MAX9583 is offered in a small, 6-pin thin SOT23 package. The MAX9584 is offered in a small, 8-pin $\mu \mathrm{MAX}{ }^{\circledR}$ package, and the MAX9585 is offered in a small, 10-pin $\mu \mathrm{MAX}$ package.

Applications
Set-Top Boxes
Televisions
Portable

- Dual- (MAX9583), Triple- (MAX9584), and Quad- (MAX9585) Channel Devices
8.5MHz, $\pm 1 \mathrm{~dB}$ Passband

55dB Attenuation at 27MHz

- Fixed Gain of 2V/V

Low Power: 3.5mA per Channel

- 2.7V to 3.6V Single-Supply Operation
- Small SOT23 and μ MAX Packages

Ordering Information

PART	PIN-PACKAGE	CHANNELS	PKG CODE
MAX9583AZT+T	6 Thin SOT23-6	2	$\mathrm{Z} 6+1$
MAX9584AUA +T	$8 \mu \mathrm{MAX}-8$	3	$\mathrm{U}+1$
MAX9585AUB+T	$10 \mu \mathrm{MAX}-10$	4	$\mathrm{U} 10+2$

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead-free package.
$T=$ Tape and reel.

Pin Configurations and Selector Guide located at end of data sheet.
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

ABSOLUTE MAXIMUM RATINGS

VDD to GND	-0.3V to +4V
IN_ to GND	-0.3V to +4V
OUT_ Short-Circuit Duration to V ${ }_{\text {DD }}$, GND ..	Continuous
Continuous Input Current IN	$\pm 20 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ}$	
6-Pin Thin SOT23 (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ab	$\left.{ }^{\circ} \mathrm{C}\right) . . .727 \mathrm{~mW}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\right.$ no load, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	Guaranteed by PSRR		2.7		3.6	V
Supply Current	IDD	Per channel			3.5	7	mA
Input Voltage Range	VIN	Guaranteed by DC voltage gain	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	0		1.05	VP-P
			$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	0		1.2	
Input Current	IIN	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			0.6	10	$\mu \mathrm{A}$
Input Resistance	RIN				25		$\mathrm{M} \Omega$
DC Voltage Gain (Note 2)	Av	$R \mathrm{~L}=150 \Omega$ to GND	$\begin{aligned} & \hline V_{D D}=2.7 \mathrm{~V}, \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 1.05 \mathrm{~V} \\ & \hline \end{aligned}$	1.92	2	2.04	V/V
			$\begin{aligned} & V_{D D}=3 V \\ & O V \leq V_{I N} \leq 1.2 V \end{aligned}$	1.92	2	2.04	
DC Gain Matching		Guaranteed by DC voltage gain		-2	0	+2	\%
Output Level		Measured at $\mathrm{V}_{\text {OUt, }} \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND		0.210	0.300	0.410	V
Output-Voltage Swing		$\begin{aligned} & \text { Measured at output, } V_{D D}=2.7 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{I N} \leq 1.05 \mathrm{~V}, \\ & R_{L}=150 \Omega \text { to }-0.2 \mathrm{~V} \end{aligned}$			2.1		VP-P
		Measured at output, $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq 1.05 \mathrm{~V}$, $R_{L}=150 \Omega$ to $V_{D D} / 2$			2.1		
		Measured at output, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq 1.2 \mathrm{~V}$,$R_{L}=150 \Omega \text { to }-0.2 \mathrm{~V}$			2.4		
		Measured at output, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq 1.2 \mathrm{~V}$,$R_{L}=150 \Omega \text { to } V_{D D} / 2$			2.4		
		$\begin{array}{\|l} \text { Measured at output, } \mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V} I \mathrm{~N} \leq 1.05 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=75 \Omega \text { to }-0.2 \mathrm{~V} \\ \hline \end{array}$			2.1		
Output Short-Circuit Current		Short to GND (sourcing)			140		mA
		Short to V ${ }_{\text {DD }}$ (sinking)			70		
Output Resistance	Rout	VOUT $=1.5 \mathrm{~V},-10 \mathrm{~mA} \leq 1$ LOAD $\leq 10 \mathrm{~mA}$			0.2		Ω
Power-Supply Rejection Ratio	PSRR	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$		48			dB
		$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{P}^{\text {P }}$			29		

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=3.3 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\right.$ no load, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)($ Note 1$)$

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.
Note 2: Voltage gain (Av) is a two-point measurement in which the output voltage swing is divided by the input voltage swing.

Typical Operating Characteristics

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{DD}}=\overline{\mathrm{SHDN}}=3.3 \mathrm{~V}$, video outputs have $\mathrm{R}_{\mathrm{L}}=150 \Omega$ connected to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

GROUP DELAY vs. FREQUENCY

VOLTAGE GAIN
vs. TEMPERATURE

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

OUTPUT VOLTAGE vs. INPUT VOLTAGE

12.5T RESPONSE

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{DD}}=\overline{\mathrm{SHDN}}=3.3 \mathrm{~V}$, video outputs have $\mathrm{R}_{\mathrm{L}}=150 \Omega$ connected to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INPUT-TO-INPUT CROSSTALK
vs. FREQUENCY

OUTPUT IMPEDANCE vs. FREQUENCY

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

MAX9583	MAX9584	MAX9585	NAME	
$\mathbf{6}$ SOT23	$\mathbf{8} \boldsymbol{\mu} \mathbf{M A X}$	$\mathbf{1 0} \boldsymbol{\mu M A X}$		
2	4	5	GND	Ground
3	1	1	INA	Video Input A
1	2	2	INB	Video Input B
-	3	3	INC	Video Input C
-	-	4	IND	Video Input D
4	7	9	OUTA	Video Output A
6	6	8	OUTB	Video Output B
-	5	7	OUTC	Video Output C
-	-	6	OUTD	Video Output D
5	8	10	VDD	Positive Power Supply. Bypass to GND with a 0.1 $1 \mu \mathrm{~F}$ capacitor.

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

Abstract

Detailed Description The MAX9583/MAX9584/MAX9585 filter and amplify the video DAC output in applications such as set-top boxes and televisions. These devices consist of input buffers, lowpass filters, and gain of 2V/V output amplifiers capable of driving a standard 150Ω video load to ground.

\section*{Inputs}

The video inputs should be directly connected to the output of the video current DAC. DC coupling ensures that the input signals are ground referenced so that the sync tip of composite or luma signals is within 50 mV of ground and the blank level of the chroma signal is between 0.5 V and 0.65 V . Since the input buffers are identical, any standard-definition video signal can be applied to those inputs provided the signal is between ground and 1.05 V when $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$. For example, three composite video signals could be applied to INA, INB, and INC of the MAX9584. The RGB set or the YPbPr set can also be inputs to INA, INB, and INC of the MAX9584.

Video Filter

The filter passband $(\pm 1 \mathrm{~dB})$ is typically 8.5 MHz , which makes the device suitable for standard-definition video signals from all sources (e.g., broadcast and DVD). Broadcast video signals are channel limited: NTSC signals have 4.2 MHz bandwidth and PAL signals have 5 MHz bandwidth. Video signals from a DVD player, however, are not channel limited, so the bandwidth of DVD video signals can approach the Nyquist limit of 6.75 MHz . (Recommendation ITU-R BT.601-5 specifies 13.5 MHz as the sampling rate for standard-definition video). Therefore, the maximum bandwidth of the signal is 6.75 MHz . To ease the filtering requirements, most modern video systems oversample by two times, clocking the video current DAC at 27 MHz .

Outputs

The video output amplifiers can both source and sink load current, allowing output loads to be DC- or ACcoupled. The amplifier output stage needs approximately 300 mV of headroom from either supply rail. The devices have an internal level-shift circuit that positions the sync tip at approximately 300 mV at the output. The blank level of the chroma output is positioned at approximately 1.3 V if the blank level of the chroma input signal is 0.5 V . The blank level of the chroma output is positioned at approximately 1.5 V if the blank level of the chroma input signal is 0.6 V .

If the supply voltage is greater than 3.135 V (5% below a 3.3 V supply), each amplifier can drive two DC-coupled video loads to ground. If the supply is less than 3.135V, each amplifier can drive only one DC-coupled or AC-coupled video load.

Applications Information

Reducing Power Consumption in the Video DACs

The MAX9583/MAX9584/MAX9585 have high-impedance input buffers that work with source resistances as high as 1000Ω. To reduce power dissipation in the video DACs, the DAC output resistor can be scaled up in value. The reference resistor that sets the reference current inside the video DACs must also be similarly scaled up. For instance, if the output resistor is 37.5Ω, the DAC must source 26.7 mA when the output is 1 V . If the output resistor is increased to 300Ω, then the DAC only needs to source 3.33 mA when the output is 1 V .
There is parasitic capacitance from the DAC output to ground. That capacitance, in parallel with the DAC output resistor, forms a pole that can potentially roll off the frequency response of the video signal. For example, 300Ω in parallel with 50 pF create a pole at 10.6 MHz . To minimize this capacitance, reduce the area of the signal trace attached to the DAC output as much as possible, and place the MAX9583/MAX9584/MAX9585 as close as possible to the video DAC outputs.

AC-Coupling the Outputs

The outputs can be AC-coupled since the output stage can source and sink current as shown in Figure 1. Coupling capacitors should be $220 \mu \mathrm{~F}$ or greater to keep the highpass filter, formed by the 150Ω equivalent resistance of the video transmission line, to a corner frequency of 4.8 Hz or below. The frame rate of PAL systems is 25 Hz , and the frame rate of NTSC systems is 30 Hz . The corner frequency should be well below the frame rate.

Power-Supply Bypassing and Ground

 The MAX9583/MAX9584/MAX9585 operate from a singlesupply voltage down to 2.7 V , allowing for low-power operation. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor. Place all external components as close as possible to the device.
Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

G8G6XVW/t8G6XVW/E8G6XVW

Figure 1. AC-Coupled Outputs

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

MAX9583/MAX9584/MAX9585

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

Pin Configurations

Selector Guide

PART	PIN-PACKAGE	PACKAGE SIZE	CHANNELS	TOP MARK	PKG CODE
MAX9583AZT +	6 Thin SOT23-6	$2.9 \mathrm{~mm} \times 1.6 \mathrm{~mm}$	2	AADJ	Z6+1
MAX9584AUA +	$8 \mu \mathrm{MAX}-8$	$3 \mathrm{~mm} \times 3 \mathrm{~mm}$	3	-	U8+1
MAX9585AUB +	$10 \mu \mathrm{MAX}-10$	$3 \mathrm{~mm} \times 3 \mathrm{~mm}$	4	-	U10+2

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range. +Denotes a lead-free package.

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NDTES

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. 'DP AND EEL ARE REFERENCE DATUM AND DD NOT INCLUDE MOLD FLASH OR PROTRUSİNS, AND ARE MEASURED AT THE BDTTIM PARTING LINE., MOLD FLASH IR

3. THE LEAD WIDTH DIMENSION DDES NOT INCLUDE DAMBAR PROTRUSIIN. ALLIVABLE DAMBAR PROTRUSIDN SHALL BE 0.07 mm TOTAL IN EXCESS OF THE LEAD WIDTH dIMENSION AT MAXIMUM MATERIAL CONDITION.
4. DATUM PLANE rH" LOCATED AT MDLD PARTING Line AND CIINCIDENT WITH LEAD, VHERE LEAD EXITS PLASTIC BODY AT THE BOTTOM DF PARTING LINE,
S. THE LEAD TIPS MUST LINE WITHIN A SPECIFIED TRERANCE ZZNE. THIS TDLERANCE ZONE IS DEFINED BY TWO PARALLEL LINES. DNE PLANE IS THE
 PLANAR WITH RESPECT TO ONE ANOTHER WITH 0.10 mm AT SEATING PLANE.
5. THIS PART IS CCMMPLIANT WITH JEDEC SPECIFICATION MD-193 EXCEPT FOR THE "e" DIMENSION WHICH IS 0.95 mm INSTEAD IF 1.00 mm . THIS PART IS IN FULL CIMPLIANCE TO EIAJ SPECIFICATION SC-74.
6. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. CIPLANARITY SHALL NIT EXCEED 0.08 mm .
7. Varpage shall not exceed 0.10 mm .
8. THE TERMINAL \#I IDENTIFIER AND TERMINAL NUMBERING CDNVENTION SHALL CONFORM TO JESD 95-1 PP-012. DETAILS OF TERMINAL *1 IDENTIFIER ARE OPTIINAL. THE TERMINAL \#I IDENTIFIER MAY BE EITHER A MILD DR MARKED FEATURE.
9. MARKING IS FIR PaCKAGE ORIENTATION REFERENCE anly.

SYMBDLS				
	MIN	NIM	MAX	
A	-	-	1.10	
A1	0.00	0.075	0.10	
A2	0.85	0.88	0.90	
A3	0.50 BSC			
b	0.30	-	0.45	
b1	0.25	0.35	0.40	
c	0.15	-	0.20	
C1	0.12	0.127	0.15	
D	2.80	2.90	3.00	
E	2.75 BSC			
E1	1.55	1.60	1.65	
L	0.30	0.40	0.50	
e1	1.90 BSC			
e	0.95 BSC			
OC	0^{\bullet}	4^{\bullet}	8^{\bullet}	
au.a	0.20			
PKg. codes	Z6-1। Z6-2			

11. ALL dimensions apply to both leaded (-) and lead free (t) package codes.

APPROVAL	DOCUMENT CONTROL NO. $1-0114$	C	$2 / 2$

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with DC-Coupled Input Buffers

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO-187C-BA.

SIDE VIEW

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	-	0.043	-	1.10
A1	0.002	0.006	0.05	0.15
A2	0.030	0.037	0.75	0.95
D1	0.116	0.120	2.95	3.05
D2	0.114	0.118	2.89	3.00
E1	0.116	0.120	2.95	3.05
E2	0.114	0.118	2.89	3.00
H	0.187	0.199	4.75	5.05
L	0.0157	0.0275	0.40	0.70
L1	0.037 REF		0.940 REF	
b	0.007	0.0106	0.177	0.270
e	0.0197 BSC		0.500 BSC	
c	0.0035	0.0078	0.090	0.200
S	0.0196 REF		0.498 REF	
α	0°	6°	0°	6°

FRONT VIEW

BOTTOM VIEW

Revision History
Pages changed at Rev 1: 1, 2, 20
Pages changed at Rev 2: 1, 2, 6, 11-15 (deleted some
package outlines)
Pages changed at Rev 3: 1, 15
Pages changed at Rev 4: 1-4, 8, 15
Pages changed at Rev 5: 1, 8, 15

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

